LZ2424J

DESCRIPTION

LZ2424J is a 1/4-type (4.5 mm) solid-state image sensor that consists of PN phote-diodes and CCDS (charge-coupled devices). Having approximately 320000 pixels (horizontal 542 X vertical 582), the sensor provides a high resolution stable B/W image.

FEATURES

- Number of pixels :512 (H) X 582 (V) Pixel pitch : $7.2 \mu \mathrm{~m}(\mathrm{H}) \times 4.7 \mu \mathrm{~m}$ (V) Number of optical black pixels
: Horizontal; front 2 and rear 28
- Low fixed pattern noise and lag
- No burn-in and no image distortion
- Blooming suppression structure
- Built-in output amplifier
- Variable electronic shutter (1/50 to $1 / 10000$ s)
- Compatible with CCIR standard

1/4 type B/W CCD Area Sensor for CCIR

PIN CONNECTIONS

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	
RD	Reset transistor drain
OD	Output transistor drain
OS	Video output
ϕ_{RS}	Reset transistor clock
$\phi_{\mathrm{V} 1}, \phi_{\mathrm{V} 2}, \phi_{\mathrm{V} 3}, \phi_{\mathrm{V} 4}$	Vertical shift register clock
$\phi_{\mathrm{H} 1}, \phi_{\mathrm{H} P}$	Horizontal shift register clock
OFD	Overflow drain
PW	P type well
GND	Ground
NG1, NC2, NC3	No connection

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Output transistor drain voltage	V00	Oto +18	V
Reset drain voltage	Vrd	Oto +18	v
Overflow drain voltage	Vom	0 to +55	V
Reset gate clock voltage	$V \phi$ RS	-0.3 to +18	v
Vertical shift register clock voltage	$V_{\phi V}$	-9.0 to +18	v
Horizontal shift register clock voltage	$\mathrm{V}_{\phi} \mathrm{H}$	$-0,3$ to +18	V
Voltage difference between PW and vertical	Vpw - $\mathrm{V}_{\phi} \mathrm{V}$	-28 to 0	V
Storage temperature	Tstg	-20 to +80	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	Topr	-20 to +70	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER			SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Operating ambient temperature			Topr		25.0		C	
Output transistor drain voltage			Vod	14.5	15.0	16.0	v	
Reset transistor drain voltage			VRD		Vod		v	
Overflow drain voltage	When DC is applied		VOFD	5.0		19.0	v	1
	When pulse is applied p-p level		$V_{\text {¢ }}$ OfD	23.0			v	2
Ground			GND		0.0		V	
P-well voltage			Vpw	- 10.0		$V_{\phi} \mathrm{VL}$	V	
Vertical shift register clock		LOW level	$V_{\phi} V_{1 L}, V_{\phi \text { V3L }}$ $V_{\phi V 2 L}, V_{\phi V 4 L}$	- 8.5	- 8.0	-7.5	v	
		INTERMEDIATE level	$V_{\phi V 11}, V_{\text {¢V31 }}$ $V_{\text {фV21, }} V_{\text {фV41 }}$		0.0		V	
		HIGH level	$\mathrm{V}_{\phi \text { VIH, }} \mathrm{V}_{\boldsymbol{\phi} \text { V3H }}$	17.0	17.5	18.0	v	
Horizontal shift register clock		LOW level	$\mathrm{V}_{\phi} \mathrm{HLL}, \mathrm{V}_{\phi \text { H2L }}$	- 0.05	0,0	0.05	v	
		HIGH level	$\mathrm{V}_{\phi \text { Hil }} \mathrm{V}_{\phi \text { H2H }}$	4.7	5.0	6.0	v	
Reset gate clock		LOW level	$V_{\phi \text { RSL }}$	0.0		Voo-13.0	v	
		HIGH level	V_{ϕ} RSH	$\mathrm{VOD}-8.5$		10.0	v	
Vertical shift register clock frequency			$f_{\phi} v_{1}, f_{\phi} v_{2}$ $f_{\phi} \vee^{\prime}, f_{\phi} \vee_{4}$		15.63		kHz	
Horizontal shift register clock frequency			$\mathrm{f}_{\phi} \mathrm{H}_{1}, \mathrm{f}_{\boldsymbol{\phi}} \mathrm{H}_{2}$		9.66		MHz	
Reset gate clock frequency			$\mathrm{f}_{\phi} \mathrm{FR}$		9.66		MHz	

* Connect NC ${ }_{1}, \mathrm{NC} 2$ and NC3 to GND directly or through a capacitor lager than $0.047 \mu \mathrm{~F}$.

NOTES :

1. When DC voltage is applied, shutter speed is $1 / 50$ seconds.
2. When pulse is applied, shutter speed is less than $1 / 50$ seconds.

ELECTRICAL CHARACTERISTICS (Drive method : Field Accumulation)

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, Operating conditions : typical values for the recommended operating conditions, Color temperature of light source : $3200 \mathrm{~K} / \mathrm{IR}$ cut-off filter (CM-500, 1 mmt))

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Standard output voltage	Vo		150		mV	2
Photo response non-uniformity	PRNU			15	$0 / 0$	3,4
Saturation output voltage	Vaat	650			mV	3,5
Dark output voltage	Vdark		0.5	3.0	mV	1,6
Dark signal non-uniformity	DSNU		0.5	2.0	mV	$1,3,7$
Sensitivity	R	230	320		mV	8
Smear ratio	SMR		-80	-72	dB	9,10
Image lag	AI			1.0	$0 / 0$	11
Blooming suppression ratio	ABL	1000				9,12
Output transistor drain current	IOD		4,0	8.0	mA	
Output impedance	Ro		350		Ω	

NOTES :

1. $\mathrm{Ta}:+60^{\circ} \mathrm{C}$
2. The average output voltage under the uniform illumination. The standard exposure condition is defined when Vo is 150 mV .
3. The image area is divided into 10 X 10 segments. The segment's voltage is the average output voltage of all the pixels within the segment.
4. PRNU is defined by $(V \max -\mathrm{Vmin}) / V_{o}$, where $V \max$ and V min are the maximum and the minimum values of each segment's voltage respectively, under the stand ard exposure condition.
5. The minimum segment's voltage under 10 times exposure of the standard exposure condition.
6. The average output voltage under the non-exposure condition.
7. DSNU is defined by (Vdmax - Vdmin), where Vdmax and

Vdmin are the maximum and the minimum values of each segment's voltage respectively, under the non-exposure condition.
8. The average output voltage when a 1000 lux light source with a 90% reflector is imaged with a lens at F4, f5D mm.
9. The sensor is exposed only in the central area of V/I O square, where V is the vertical image size.
10. SMR is defined by the ratio of the smear voltage detected during the vertical blanking period to the maximum output voltage in the $\mathrm{V} / \mathrm{I} \mathrm{O}$ square, with a lens at F 4 .
11. The sensor is exposed at the exposure level corresponding to the standard condition. Al is defined by the ratio of the lag voltage meesured at the 1st field during the non-exposure period to the standard output voltage,
12. $A B L$ is defined by the ratio of the exposure at the standard condition to the exposure at a point where a blooming is observed.

PIXEL STRUCTURE

SPECTRAL RESPONSE EXAMPLE

TIMING DIAGRAM EXAMPLE

HORIZONTAL TRANSFER TIMING

READOUT TIMING
(1st, 3rd FIELD)

(2nd, 4th FIELD)

SYSTEM CONFIGURATION EXAMPLE

